Code No: 762AD JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD MBA II Semester Examinations, March/April - 2023 **OUANTITATIVE ANALYSIS FOR BUSINESS DECISIONS** Max.Marks:75

Time: 3 Hours

Note: i) Question paper consists of Part A, Part B. ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions. iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

PART - A

	(25	Marks)
1.a) b) c) d) e)	What is Operations Research and what is its nature? Give an example of a real-world application of linear programming. What is the difference between a balanced and unbalanced assignment problem Explain the basic concepts of Decision Theory. Discuss the basic components of a queuing model.	[5] [5] n? [5] [5] [5]
,		
	PART - B	
	(50	Marks)
2 a)	Discuss the types of models used in Operations Research	
2.a) b)	What is the process for developing on Operations Research model?	[5+5]
0)	what is the process for developing an Operations Research model?	[3+3]
3 a)	What is the difference between quantitative and qualitative analysis in Operation	ons
5.4)	Research?	0110
b)	What are the showcomings of using an Operations Research model?	[5+5]
0)		
4.a)	What is the difference between the primal and dual formulations of	a linear
)	programming problem?	
b)	Solve the following Linear programming problem:	
,	Maximize $Z = 3x1 + 2x2$	
	subject to the constraints:	
	$x1 + x2 \le 4$	
	$2x1 + 5x2 \le 10$	
	$x1, x2 \ge 0.$	[4+6]
	OR	
5.a)	What is an unbalanced transportation problem? How do you balance an problem?	unbalanced

b) Find the initial basic feasible solution by using North-West Corner Rule. [4+6]

117			2 (
$W \rightarrow$					
F	117	117	117	N 7	Factory
\downarrow	W 1	W 2	W 3	W 4	Capacity
F ₁	19	30	50	10	7
F_2	70	30	40	60	9
F ₃	40	8	70	20	18
Warehouse	5	o	7	14	24
Requirement	5	0	/	14	34

Download all NOTES and PAPERS at StudentSuvidha.com

- 6.a) Describe the variations of the assignment problem and explain how to resolve.
- b) Certain equipment needs 5 repair jobs which have to be assigned to 5 machines. The estimated time (in hours) that a mechanic requires to complete the repair job is given in the table. Assuming that each mechanic can be assigned only one job, determine the minimum time assignment. [4+6]

	J1	J2	J3	J4	J5
M1	7	5	9	8	11
M2	9	12	7	11	10
M3	8	5	4	6	9
M4	7	3	6	9	5
M5	4	6	7	5	11

OR

- 7.a) Explain the Hungarian method for solving the assignment problem.
- b) Solve the following travelling salesmen problem.

				_			
		1	2	3	4	5	
	1	8	2	5	7	1	
From	2	6	8	3	8	2	
	3	8	7	8	4	7	
	4	12	4	6	8	5	D
	5	1	X	2	8	∞	
		4.0		4			-

- 8.a) Discuss the difference between decision making under certainty, risk and uncertainty. Provide examples of each type of decision-making scenario.
 - b) Consider the following pay-off (profit) matrix.

[5+5]

[5+5]

Action	States					
Retion	(S_1)	(S_2)	(S ₃)	(S_4)		
A ₁	5	10	18	25		
A ₂	8	7	8	23		
A ₃	21	18	12	21		
A ₄	30	22	19	15		

No Probabilities are known for the occurrence of the nature states. Compare the solutions obtained by each of the following criteria:

(i) Maximin (ii) Laplace (iii) Hurwicz (assume that $\alpha = 0.5$). [5+5]

OR

Download all NOTES and PAPERS at StudentSuvidha.com

- 9.a) Compare and contrast the PERT and CPM techniques of project management. Discuss the situations where each method is more suitable.
 - b) Determine the early start and late start in respect of all node points and identify critical path for the following network. [5+5]

- 10.a) Discuss the single and multiple service station queuing models with finite and infinite population. How do these models differ from each other?
 - b) A fast-food restaurant has one cashier and one cook. Customers arrive in a Poisson process with an average rate of 20 per hour, and each customer takes an average of 5 minutes to be served by the cook. The cashier takes an average of 1 minute to take an order and accept payment. The service times for both the cashier and cook follows an exponential distribution. What is the average waiting time for a customer and the average number of customers in the queue? [5+5]

OR

- 11.a) Explain the following terms i) Competitive Come
 - ii) Strategy
 - iii) Value of the game
 - iv) Pay-off-matrix
 - v) Optimal strategy
 - b) From the following game, evaluate the optimal strategies and value of the game for both the players. [5+5]

	B's Strategy						
		B1	B2	B3	B4	B5	
۸'۵	A1	8	10	-3	-8	-12	
A S Stratogy	A2	3	6	0	6	12	
Shalegy	A3	7	5	-2	-8	17	
	A4	-11	12	-10	10	20	
	A5	-7	0	0	6	2	

---00000----

Download all NOTES and PAPERS at StudentSuvidha.com